Copied to
clipboard

G = C12.21C42order 192 = 26·3

14th non-split extension by C12 of C42 acting via C42/C2xC4=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C12.21C42, C23.5Dic6, (C2xC24).3C4, (C2xC4).15D12, (C2xC8).3Dic3, C4.36(D6:C4), C3:(C4.10C42), (C2xC12).113D4, (C22xC6).9Q8, C4.26(C4xDic3), (C22xC4).81D6, C12.12(C22:C4), (C2xM4(2)).11S3, (C6xM4(2)).15C2, C4.20(C6.D4), C22.7(Dic3:C4), C22.11(C4:Dic3), C6.19(C2.C42), C2.19(C6.C42), (C22xC12).129C22, (C2xC3:C8).3C4, (C2xC6).10(C4:C4), (C2xC4).143(C4xS3), (C2xC12).66(C2xC4), (C2xC4).23(C3:D4), (C2xC4).78(C2xDic3), (C2xC4.Dic3).14C2, SmallGroup(192,119)

Series: Derived Chief Lower central Upper central

C1C12 — C12.21C42
C1C3C6C12C2xC12C22xC12C2xC4.Dic3 — C12.21C42
C3C12 — C12.21C42
C1C4C2xM4(2)

Generators and relations for C12.21C42
 G = < a,b,c | a12=1, b4=c4=a6, bab-1=a5, ac=ca, cbc-1=a9b >

Subgroups: 168 in 86 conjugacy classes, 47 normal (21 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C22, C6, C6, C8, C2xC4, C2xC4, C23, C12, C12, C2xC6, C2xC6, C2xC6, C2xC8, C2xC8, M4(2), C22xC4, C3:C8, C24, C2xC12, C2xC12, C22xC6, C2xM4(2), C2xM4(2), C2xC3:C8, C4.Dic3, C2xC24, C3xM4(2), C22xC12, C4.10C42, C2xC4.Dic3, C6xM4(2), C12.21C42
Quotients: C1, C2, C4, C22, S3, C2xC4, D4, Q8, Dic3, D6, C42, C22:C4, C4:C4, Dic6, C4xS3, D12, C2xDic3, C3:D4, C2.C42, C4xDic3, Dic3:C4, C4:Dic3, D6:C4, C6.D4, C4.10C42, C6.C42, C12.21C42

Smallest permutation representation of C12.21C42
On 48 points
Generators in S48
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 28 4 31 7 34 10 25)(2 33 5 36 8 27 11 30)(3 26 6 29 9 32 12 35)(13 45 22 42 19 39 16 48)(14 38 23 47 20 44 17 41)(15 43 24 40 21 37 18 46)
(1 21 4 24 7 15 10 18)(2 22 5 13 8 16 11 19)(3 23 6 14 9 17 12 20)(25 37 34 46 31 43 28 40)(26 38 35 47 32 44 29 41)(27 39 36 48 33 45 30 42)

G:=sub<Sym(48)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,28,4,31,7,34,10,25)(2,33,5,36,8,27,11,30)(3,26,6,29,9,32,12,35)(13,45,22,42,19,39,16,48)(14,38,23,47,20,44,17,41)(15,43,24,40,21,37,18,46), (1,21,4,24,7,15,10,18)(2,22,5,13,8,16,11,19)(3,23,6,14,9,17,12,20)(25,37,34,46,31,43,28,40)(26,38,35,47,32,44,29,41)(27,39,36,48,33,45,30,42)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,28,4,31,7,34,10,25)(2,33,5,36,8,27,11,30)(3,26,6,29,9,32,12,35)(13,45,22,42,19,39,16,48)(14,38,23,47,20,44,17,41)(15,43,24,40,21,37,18,46), (1,21,4,24,7,15,10,18)(2,22,5,13,8,16,11,19)(3,23,6,14,9,17,12,20)(25,37,34,46,31,43,28,40)(26,38,35,47,32,44,29,41)(27,39,36,48,33,45,30,42) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,28,4,31,7,34,10,25),(2,33,5,36,8,27,11,30),(3,26,6,29,9,32,12,35),(13,45,22,42,19,39,16,48),(14,38,23,47,20,44,17,41),(15,43,24,40,21,37,18,46)], [(1,21,4,24,7,15,10,18),(2,22,5,13,8,16,11,19),(3,23,6,14,9,17,12,20),(25,37,34,46,31,43,28,40),(26,38,35,47,32,44,29,41),(27,39,36,48,33,45,30,42)]])

42 conjugacy classes

class 1 2A2B2C2D 3 4A4B4C4D4E6A6B6C6D6E8A8B8C8D8E···8L12A12B12C12D12E12F24A···24H
order122223444446666688888···812121212121224···24
size1122221122222244444412···122222444···4

42 irreducible representations

dim1111122222222244
type+++++--++-
imageC1C2C2C4C4S3D4Q8Dic3D6C4xS3D12C3:D4Dic6C4.10C42C12.21C42
kernelC12.21C42C2xC4.Dic3C6xM4(2)C2xC3:C8C2xC24C2xM4(2)C2xC12C22xC6C2xC8C22xC4C2xC4C2xC4C2xC4C23C3C1
# reps1218413121424224

Matrix representation of C12.21C42 in GL4(F73) generated by

3000
0300
290240
290024
,
320710
00721
240410
5146410
,
17100
607200
1041046
04110
G:=sub<GL(4,GF(73))| [3,0,29,29,0,3,0,0,0,0,24,0,0,0,0,24],[32,0,24,51,0,0,0,46,71,72,41,41,0,1,0,0],[1,60,10,0,71,72,41,41,0,0,0,1,0,0,46,0] >;

C12.21C42 in GAP, Magma, Sage, TeX

C_{12}._{21}C_4^2
% in TeX

G:=Group("C12.21C4^2");
// GroupNames label

G:=SmallGroup(192,119);
// by ID

G=gap.SmallGroup(192,119);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,28,253,64,387,184,1123,136,102,6278]);
// Polycyclic

G:=Group<a,b,c|a^12=1,b^4=c^4=a^6,b*a*b^-1=a^5,a*c=c*a,c*b*c^-1=a^9*b>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<